Reuters highlights our study on crowd AI algorithms

 
Screen Shot 2020-06-11 at 9.23.49 AM.png
 

Reuters covers our study published in JAMA Oncology on application of crowd innovation via an online contest to develop highly accurate AI models to automatically segment and target lung tumors on CT scans for radiation therapy planning. Contestants from around the world were provided with segmentations from a human expert to train their models, and the accuracy of these crowdsourced models were benchmarked against human experts. The crowd innovation approach resulted in rapid development of multiple potential, high-performing solutions and was highly cost-effective.

Lung cancer is the leading cause of cancer-related deaths in the world. Approximately 50% of lung cancer patients will need radiation therapy, but radiation therapy planning for lung cancer requires expert radiation oncologists to manually segment the tumor for targeting, which is time consuming and highly variable between oncologists. The shortage of trained radiation oncologists to meet the increasing incidence of lung cancer patients around the world represents a global health crisis, and AI-based auto-segmentation solutions to replicate these human skills provide a means to improve access to and the quality of cancer care.