Kann Laboratory

Directed by Dr. Benjamin Kann, the Kann Laboratory within AIM investigates ut venenatis tellus in metus vulputate eu scelerisque. Pretium lectus quam id leo in vitae turpis massa. Ultrices sagittis orci a scelerisque purus semper eget. Pharetra vel turpis nunc eget lorem dolor sed viverra ipsum. Potenti nullam ac tortor vitae purus faucibus. Ullamcorper sit amet risus nullam eget. Est pellentesque elit ullamcorper dignissim cras tincidunt lobortis. Ipsum nunc aliquet bibendum enim facilisis gravida neque convallis. Consectetur adipiscing elit duis tristique sollicitudin nibh. Non pulvinar neque laoreet suspendisse. Consectetur adipiscing elit pellentesque habitant morbi tristique senectus. Malesuada proin libero nunc consequat interdum.
Eget gravida cum sociis natoque penatibus et. Scelerisque mauris pellentesque pulvinar pellentesque habitant morbi tristique senectus. Turpis egestas sed tempus urna et pharetra. Ut tellus elementum sagittis vitae et leo duis ut diam. Tristique et egestas quis ipsum suspendisse ultrices gravida dictum. Convallis tellus id interdum velit laoreet id donec ultrices tincidunt. Elit at imperdiet dui accumsan sit amet. Nibh venenatis cras sed felis eget velit aliquet sagittis id. Eleifend mi in nulla posuere sollicitudin. Nulla pharetra diam sit amet nisl suscipit adipiscing bibendum. Tempor orci eu lobortis elementum nibh tellus. Consectetur lorem donec massa sapien faucibus et. Nisi quis eleifend quam adipiscing vitae proin sagittis nisl. Sapien nec sagittis aliquam malesuada bibendum arcu vitae elementum curabitur. Urna nec tincidunt praesent semper feugiat nibh sed pulvinar proin. Quisque id diam vel quam elementum. Eleifend quam adipiscing vitae proin sagittis nisl rhoncus mattis.
People
Research Highlights
Researchers at AIM investigated the use of LLMs for patient portal messaging.
AIM study investigates if AI can highlight social determinants of health from clinical notes
AIM investigators developed AI to track muscle mass for children through young adulthood
AIM researchers investigate ChatGPT for its ability to provide cancer treatment recommendations
AIM researchers developed AI that can diagnose sarcopenia in head and neck cancer.
AIM investigators published a clinical evaluation of AI algorithms to screen for extranodal-extension on CT.
We developed an AI model that can accurately predict distant metastases after treatment for lung cancer patients.
AIM investigators found that clinical trials with AI algorithms showed high variability in quality.
In Lancet Digital Health, we published a clinical validation of deep learning algorithms to target lung cancer tumors.
In Cancer Cell, we published our perspective on the impact of AI in Clinical Oncology.
In Nature Reviews Clinical Oncology, we highlight how AI is transforming the field of radiation oncology to treat patients more accurately and efficiently.
Deep learning identifies extranodal extension in head and neck cancer better than radiologists; potential to be used for treatment decisions.